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Abstract-The analysis is carried out for laminar natural convection in a prismatic enclosure the cross- 
section of which constitutes an isosceles triangle. Two cases of thermal boundary conditions are considered : 
(a) the horizontal base is adiabatic, while the inclined walls are isothermal (cold and hot) ; (b) all the solid 
surfaces are isothermal (hot inclined surfaces and cold bottom). The finite-difference method for solving 
the non-stationary Navier-Stokes and energy equations is described which utilizes the physical variables 
velocity-pressure-temperature. The numerical solution of the problem is presented for Grashof numbers 
10’ < Gr < lo8 and height-to-base ratios 0.25 < H/L < 2. It has been found that the maximum values of 
the stream function and Nusselt numbers may perform damping oscillations around their steady-state 
values. At high Gr, gradient regions of the type of dynamic and thermal boundary layers are formed on 
all the solid surfaces and the temperature distribution in the central part of the enclosure approaches the 
conditions of fluid stratification. The present results are in good agreement with experimental data of other 

authors. 

1. INTRODUCTION 

THERE have recently been considerable advances in 
the study of the phenomena of natural convection in 
enclosures of an arbitrary configuration thanks to 
successes in the development of efficient methods for 
solving Navier-Stokes equations and the advent of 
large-capacity electronic computers, i.e. to the possi- 
bility of carrying out the so-called numerical experi- 
ment on a large scale. 

A great number of works, in which numerical 
methods were used, are concerned with the inves- 
tigation of convection in rectangular cavities [l-3]. 
Being of practical importance, this problem is a test 
one for checking and comparing different numerical 
methods. Of interest in this respect are refs. [4, 51, 
where dozens of numerical methods have been verified 
in detail on the example of natural convection in a 
square enclosure with lateral heating. 

Actual enclosures occurring in practice often have 
the shape differing from the rectangular. Thus, vari- 
ous channels of constructions, panels of electronic 
equipment, current leads in the electrotechnical indus- 
try, and solar energy collectors are of the form of 
triangular prisms. 

The first numerical simulation of convection in an 
enclosure of triangular cross-section can be found in 
ref. [6]. Specific features of two types of fluid motion 
are investigated in the cavity with bottom heating at 
over-critical Rayleigh numbers. In ref. [7], a prismatic 
enclosure of the right triangle cross-section is con- 

sidered in which the horizontal base is cooled and the 
vertical wall is adiabatic. Convection arises from the 
heating of the inclined wall. Stationary solutions of 
the problem are found within the ranges 

0.0625 < H/L < 1 and 800 < Gr < 6.4 x 104. Further 
results were given by the same authors elsewhere [8]. 
An analogous problem was solved [9] by the method 
of finite elements. 

The unsteady-state natural convection in an enclos- 
ure with the cross-section in the form of an isosceles 
triangle was studied in ref. [IO]. All the walls of the 
enclosure were assumed to be isothermal, the base to 
be heated and the side surfaces to be cooled. The 
problem was solved by three techniques : asymptotic 
expansion of unknown quantities in the small geo- 
metric parameter H/L, an analysis of the change in 
the scales of dependent variables in the process of 
convection development, and finally, calculation with 
the aid of the finite-difference method. When H/L + 

0, the total heat flux is shown to be governed by heat 
conduction. At finite values of H/L, dynamic and 
thermal wall layers develop on the surfaces of the 
enclosure. In the process of transition, velocity and 
stream function profiles attain their steady-state 
values in an oscillatory manner rather than mono- 
tonically. 

Experimental study of heat transfer by natural con- 
vection in triangular enclosures with different tem- 
perature conditions on the walls was made in refs. 
[l l-131. 

In ref. [ 111, an enclosure with the cross-section of 
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NOMENCLATURE 

heat capacity at constant pressure 
function defined by equation (13) 
functions defined by equations (9) 
and (10) 
gravitational acceleration 
Grashof number, bg( T,, - T,) L3/v’ 

height of enclosure 
relative coordinate reckoned along the 
inclined wall from the enclosure base ; 
I = 1 corresponds to the enclosure apex 
width of enclosure base 
coordinate orthogonal to the inclined 
wall 
local Nusselt number, (80/&t), 
relative local Nusselt number 
dimensionless pressure 
function defined by equation (11) 
Prandtl number, pvc,/l 
source term in equation (13) 
dimensionless time 
temperature 
dimensionless horizontal velocity 
component 
dimensionless vertical velocity 
component 
dimensionless horizontal coordinate 
dimensionless vertical coordinate. 

Greek symbols 

; 

weighted coefficient 
coefficient of volumetric thermal 
expansion 

A increment of the value 
0 relative temperature, (T- Tc)/( T,, - TJ 

KR, ICI,, KU> KD coefficients determined by 
boundary conditions 

i thermal conductivity 
A, A,, A, finite-difference operators 

; 

kinematic viscosity of fluid 
pressure correction 

P density of fluid 
z relaxation time 

* stream function. 

Subscripts 

; 
on the cold wall 
on the hot wall 

i,_i grid indices in the direction of the x- and 

y-axes, respectively 
m number of steps Ar 

: 
solid surface 
scale of the quantity. 

Superscripts 
n number of the time layer 
s number of iteration. 

an isosceles triangle was considered the base of which 
was insulated and the inclined walls were isothermal 
(hot and cold). The range of Grashof numbers 
3.9 x lo6 < Gr < 9.03 x lo6 was studied for three apex 
angles: 60”, 90” and 120”. It is shown that there are 
high temperature gradients near the surfaces, with 
liquid stratification occurring in the central part of the 
enclosure. 

Heat transfer in triangular enclosures heated or 
cooled from below was studied in ref. [12]. With 
cooling from below the flow remained stable and lami- 
nar within the range of Grashof numbers 
1.75 x lo5 < Gr < 5.08 x 106. When the bottom of the 
enclosure was heated, then at some Grashof numbers 
the flow acquired a turbulent character. 

The range of high Rayleigh numbers (from lo6 to 
109), typical for full-scale attics or littoral zones of 
seas and oceans with sloping bottoms, was studied in 
ref. [13]. The region of convection has the cross-sec- 
tion in the form of a right triangle the hypotenuse of 
which is cooled, the horizontal side is heated and the 
vertical side is insulated. A sinusoidal flow structure 
at the enclosure base is revealed. 

The overwhelming majority of works on numerical 
simulation of natural convection is based on the use 
of the variables ‘stream function-vorticity-tem- 
perature’. Numerical methods based on the use of the 

physical variables ‘velocity-pressure-temperature’ 
have been in development only from the late 1960s. 
The chief merits of these methods are: simple and 
natural formulation of boundary conditions, possi- 
bility to be directly extended to three-dimensional 
cases of motion. The physical variables were suc- 
cessfully used in ref. [ 141 for solving the Navier-Stokes 
equations by the method of markers and cells. In refs. 
[1.5, 161, weak artificial compressibility is introduced 
for studying the motion of a non-compressible fluid. 
Effective methods of solving the problems of heat 
transfer and fluid dynamics are given in refs. [ 17, 181. 

This paper considers the use of the finite-difference 
method, based on the physical variables, for cal- 
culation of transient natural convection in a triangular 
enclosure. Some aspects of the solution of this prob- 
lem are given elsewhere [ 19-211. 

2. MATHEMATICAL FORMULATION 

Consider rather a long prismatic enclosure with the 
cross-section in the form of an isosceles triangle (Fig. 
1). The gravity vector is normal to the base. 

The assumptions about the character of fluid con- 
vection in the enclosure are as follows : 

(a) the flow is two-dimensional and laminar ; 
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FIG. 1. Triangular convection region. 

(b) there are moderate temperature gradients for 
which the Boussinesq approximation is valid ; 

(c) viscous dissipation and the work done by com- 
pression forces are negligible. 

With the use of these assumptions the basic equa- 
tions for the unsteady-state natural convection can be 
written in the dimensionless form [21] as 

“+“=O 
ax ay (1) 

au a@‘) a(w) 
z+r+-= ay -g+g+g (2) 

au a(uv) + a(d) aP as a% 

at++- ax ay 
----=GrB-~+~+;i[;i (3) 

a0 a(d) + acue) 

at+ax 
F=;($+$). (4) 

For the construction of dimensionless quantities 

the linear scale is selected to be the width of the 
enclosure base L, the time scale the diffusion 
time t, = L*/v, the velocity scale the quantity 
u0 = L/to = v/L, and the pressure .scale is taken to be 
twice the dynamic pressure pui = pv*/L*. 

Equations (l)-(4) are augmented with cor- 
responding boundary and initial conditions. The 
usual non-slip and non-flow conditions are adopted 
for the velocity vector components on impermeable 
solid surfaces. The temperature boundary conditions 
are specified in two ways. In the first case the inclined 
walls are assumed to be isothermal (hot and cold) and 
the base to be insulated. In the second case all the 
enclosure surfaces are taken to be isothermal: the 
inclined walls to be hot and the base to be cold. With 
allowance for the above, the boundary conditions can 
be written as 

Case I 

u = v = 0, 0 = 1 for 0 < x ,< 0.5, y = 2Hx/L 

u = v = 0, 0 = 0 for 0.5 < x & 1, y = 2H(l -x)/L 

u=v=o,ae/ay=o forO,<x,<l,y=O (5) 

Case II 

u = v = 0, 0 = 1 for 0 < x < 0.5, y = 2HxIL 

u = o = 0, 0 = 1 for 0.5 < x ,< 1, y = 2H(l -x)/L 

u=v=o,e=o forO<.u< l,y=O. (6) 

When solving the problem in physical variables, the 
pressure p is determined from equations (2) and (3) 

accurate to an arbitrary constant. For the sake of 
definiteness, it will be assumed that p = 0 at the point 
with the coordinates x = y = 0. 

The assumed initial conditions are that the fluid 
is motionless and the temperature field is uniform 
throughout the entire convection region, i.e. 

t = 0, u = 2j = 0. e = 0.5. 

3. METHOD OF SOLUTION 

Integrate equations (2) and (3) over the time from 
t to t+At 

u(t+At) = F,(t) - ,At 

where 

v(t+At) = F2(t) - 2At 
ay 

(8) 

F,(t) = u(t) + 
[ 
g + - - 

a*u a;;) a(4 At 

w ay 1 
(9) 

F 
2 

(Q = v(t) + 

[ 

e + ef _ !Yw 
a.2 a$ ax 

a(d) 
-F+GrQ At (10) 1 

t+Li.r 

pdt. (11) 

Functions u(t+At) and a(t+At), which are deter- 
mined from equations (7) and (8) with the use of 
function p, should satisfy the condition of solenoi- 
dality, i.e. continuity equation (1). Henceforth the 
symbol ( ^) over function p will be omitted. 

The unknown function p can be found from the 
following evolutional equation which is constructed 
on the basis of continuity equation (1) with the 
addition of the term dp/az [21] 

2 + D(p) = 0 (12) 

where D(p), with equations (7) and (8) taken into 
account, has the form 

D(p)-;+;= - ($+s)At+S (13) 

and the source term S = aF, /ax+ aFi? jay. 
To construct the difference scheme, the convection 

region is marked with rectangular grids of the 
unknown values u, D, i? and p which are displaced 
relative to one another as is conventional in the 
method of markers and cells [ 141. The nodes of the 
grids will be fitted to the boundaries of the triangular 



1162 Yu. E. KARYAKIN et al. 

convection region, then the steps Ax and Ay will be 
connected by the relation Ay = 2HAxIL. The differ- 
ence analogue of expressions (7) and (8) on the shifted 
grids will be presented in the form 

CL = Fyi+ I/L, - g (Pi+ IJ -P,,,) (14) 

n+ I vii+ 1,~ = Et,+ 112 - $(Pi,,+, -Pii). (15) 

Let the finite-difference operators A, and A2 
approximate the partial differential operators a2/8x2 
and a’jay’, respectively, with the second order of 
approximation. To solve equation (12), use will be 
made of the iterative finite-difference scheme with spa- 
tial splitting 

5 
r+ 112 

__ - ccAtA,(~“+“*)+D(@) = 0 
At (16) 

t>+ I _ 5”’ I,? 

At 
- ~Atlz~([~+‘) = 0 (17) 

P 
s+l =,z+[“+‘. 

(18) 

By ruling out the fractional step from equations 
(16) and (17), it is possible to obtain an equivalent 
scheme (A = A,+A2) 

P 
s+ I 

-P” 
p= AtA[c#+‘+(l-a)@] 

AZ 

-S-(ctAtAt)‘A, [A2 r?)]. (19) 

At CI = 0.5, scheme (19) approximates the initial 
equation (12) with the approximation of 0(Ar2). 

It is convenient to present the finite-difference equa- 
tions (16) and (17) for the pressure corrections in the 
form which takes into account the boundary con- 
ditions for velocity components 

-Kb(S;,;‘--;;J,)] = 0. (21) 

When any boundary of the MAC cell coincides 
with the boundary of the convection region, then the 
corresponding coefficient from the succession uR, xL, 
mu and K,, vanishes. Otherwise it will be equal to 1. 
The coefficient icR is responsible for the right boundary 
of the MAC cell, K~ for the left, K~ for the upper and 
rc,, for the lower boundary. Thus, boundary con- 
ditions (5) and (6) for velocity components u and v 
are satisfied automatically. There are no other special 
boundary conditions for function p. 

Equations (20) and (21) are solved by successive 
scalar sweeping processes along the x- and y-direc- 
tions [22]. Near the corner points of the enclosure, the 

finite-difference equations (20) and (21) are degener- 
ate as is peculiar to the sweeping method in the regions 
of triangular shape. To accelerate the iterative process, 
the following sequence of steps AtjAr,,, Ar,. , Arm) 

is used, which ensures a uniform convergence of the 
solution over the entire spectrum of eigenvalues of the 
problem. 

When the above finite-difference method is applied, 
the sequence of operations is as follows : 

(1) using the known values of the functions u”, ~3~ 

and 8”. functions F; and F; are calculated on the nth 
time layer with the aid of expressions (9) and (10) ; 

(2) the field of function p is determined by iter- 
ations from equations (20). (21) and (18) ; 

(3) functions u”+’ and v”+’ are determined on a 
new, (n+ l)th, time layer with the aid of expressions 
(14) and (15) ; 

(4) the field of the relative temperature On+’ is 
determined from the finite-difference analogue of 
equation (4) ; 

(5) the transition to the next time layer is carried 
out. 

Calculations were carried out on a difference grid 
with 40 nodes along the vertical line and 80 nodes 
along the enclosure base. The time for calculating one 
version of the unsteady-state problem (Gr = 104) on 
an electronic computer BESM-6 amounts to about 30 
min. 

4. NUMERICAL RESULTS AND DISCUSSION 

4.1. Case I (insulated base) 

In this case the thermal boundary conditions have 
the form of equations (5). They demand that the base 
AB of the triangular enclosure (Fig. 1) is insulated 
and the inclined surfaces are isothermal (AC is hot, 
BC is cold). 

First, the problem was solved which had been 
studied experimentally in ref. [l 11. The parameters 
of the experiment are as follows: i”, = 322 K. T, = 
274 K, L = 0.1524 m. H/L = 0.5, Pr = 0.71, Gr = 
2.1577 x 10’. Figure 2 presents the distribution of 
the local Nusselt number Nu(l) = dO/irnl, along the 
surface of the cold side wall BC under the steady-state 
convection conditions, I = 0 at point B. I = 1 at point 
C. The solid line presents the results of the numerical 
solution of the problem by the above-described 
method. 

The coincidence between the numerical and exper- 
imental results should be accepted as satisfactory. the 
more so that the requirement for base insulation was 
not strictly met in the experiment. neither strictly 
observed were the conditions of isothermicity on the 
side surfaces near apex C of the enclosure. In a certain 
sense, this point is a singular one for the initial con- 
vection equations, since it is at this point that the 
isothermal surfaces with 0 = 0 and 1 intersect. 
Accordingly, the local Nusselt number should become 
infinite at point C. 

Systematic calculations of the natural convection 
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FIG. 2. Distribution of the local Nusselt number along cold 
wall BC. Comparison with experiment. 
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FIG. 3(a). The influence of Gr on function r&r) at the enclos- 
ure point with the coordinates x = 0.5 and y = 0.5H/L. 

t 
FIG. 3(b). The influence of Gr on the function of local Nu 

with time at the central point of cold wall BC. 

were made in the range of Grashof numbers 
lo3 < Gr < 10’ and of the values of the geometrical 
parameter H/L : 0.25 < H/L < 2. It was assumed that 
Pr= 1. 

Figure 3(a) shows the time history of the stream 
function at the fixed enclosure point with the coor- 
dinates x = 0.5 and y = OSH/L at H = OSL for four 
values of Gr: 104, 105, 106, and 10’. The values of the 
local Nusselt number at the central point of the cold 
wall are given in Fig. 3(b) for the same parameters. 
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FIG. 4. Stream lines (a) and isotherms (b) in the steady-state 
convection regime at H/L = 0.5. The dashed lines cor- 

respond to Gr = lo’, solid lines correspond to Gr = 1O8. 

At comparatively small Grashof numbers, 
Gr < 104, the values of the stream function tj. which 
characterize the intensity of convective motion in the 
enclosure, increase monotonously with time 
approaching a certain limit. A circulation zone is 
formed in the flow region with fluid circulating 
in a clockwise direction. 

When Gr 2 lo’, the functions $(f) and Nu(t) are 
no longer of monotonous character. At Gr = 105, 106, 
the stream function exhibits a maximum, and there- 
after decreases to some limiting value. When Gr > lo’, 
the quantity $. on having reached the maximum, 
tends to a stationary value according to the law of 
damping oscillations. In these cases the function Nu(t) 
is also non-monotonous. As follows from Fig. 3, the 
time for the development of the unsteady-state process 
decreases with an increasing Grashof number. 

The influence of the Grashof number on the 
location of stream lines is demonstrated in Fig. 4(a). 
Corresponding isotherms are given in Fig. 4(b). 

When Gr - lo-‘, the processes occurring in the 
enclosure are mainly determined by heat conduction. 
In the central part of the enclosure the isotherms take 
on almost a vertical position (Fig. 4(b), dashed lines). 

With the growth of the Grashof number the inten- 
sity of convective processes increases, at Gr = 10’ they 
fully predominate over heat conduction. On the solid 
surfaces there appear regions which resemble dynamic 
boundary layers, and gradient zones of the type of 
thermal boundary layers are formed on the side walls. 
In the central part of the enclosure the isotherms 
take horizontal positions, which corresponds to the 
conditions of fluid stratification (Fig. 4(b), solid lines). 

An investigation was made of the influence of the 
geometrical parameter H/L on the main charac- 

EMT 31:9-B 



1764 Yu. E. KARYAKIN et al. 

FIG. 5. The dependence of relative Nu’ at the central point 
of cold wall BC on geometrical parameter H/L. 

teristics of convection in a triangular enclosure. In 
Fig. 5 the dependence of the relative value, Nu’, of the 
local Nusselt number at the central point of the cold 
wall BC on the geometrical parameter H/L is given 
for Gr = 106. The scale for the construction of Nu’ is 
selected to be the maximum value of Nu. 

It follows from Fig. 5 that at a fixed Grashof num- 
ber the intensity of convective processes in an enclos- 
ure first sharply increases with the growth of the par- 
ameter H/L. At H/L z 1 the maximum of Nu is 
observed at the central point of the cold wall, then its 
value slightly decreases with an increase of H/L. 

4.2. Case II (isothermal walls) 
In this case the boundary conditions have the form 

of equations (6) and demand that all the surfaces of 
the enclosure are isothermal, the base AB is cold and 
the inclined walls AB and BC are hot. These are the 
conditions, for instance. in which solar energy col- 
lectors and attic constructions are exposed to during 
the daytime. 

Such a problem was investigated experimentally 
in ref. [12]. One of the convection regimes in the 
experiment is characterized by the following par- 
ameters : T,, = 323 K, T, = 273 K, L = 0.1524 m, 
H = 0.5L, Pr = 0.71. The corresponding Grashof 
number of the regime is Gr = 2.272 x 10’. 

In Fig. 6 the comparison is given between the results 
calculated by the above-described method and the 
data from ref. [12]. The distribution of the local Nus- 
selt number Nu(l) along the surface of the inclined 
wall AC is given as well as the distribution of the 
dimensionless temperature 0 on the vertical symmetry 
axis x = 0.5 of the triangular enclosure in the steady- 
state regime. The solid lines present the results of 
the numerical solution. The agreement of the results 
should be good. 

There is some discrepancy for Nu near point A of 
the enclosure (I E 0). In the case of rigorous for- 
mulation of the thermal boundary conditions on walls 
AB and AC (0, = 0, 0, = 1) point A becomes a singu- 
lar one. The local Nusselt number must turn into 
infinity at this point, and the integral of Nu along the 
inclined surface simply does not exist [21]. The data 
presented in ref. [12] indicate that. generally speaking, 
the conditions of the isothermicity of the walls near 
the corner points were violated in the experiment. The 
height-to-base ratio varied in calculations within the 
range 0.25 < H/L < 2, the Grashof number changed 

FIG. 6. Variation of local NU along the surface of the inclined 
wall AC and distribution of temperature 0 along the sym- 
metry line of a triangular enclosure. Comparison with experi- 

ment. 

within the range 10’ ,< Gr ,< lo’, it was assumed that 
Pr = 1. The original convection equations with 
boundary conditions (6) presuppose the existence of 
the solution symmetry about the vertical axis which 
passes through the enclosure apex C 

U(.U,f) = -u(l -.X,,) 

0(.x,?‘) = 2(1 -x,y) 

P(X9.r) =p(l--x,P) 

Q(x.J’) = O(l-.X,_r). 

Nevertheless. the symmetry conditions were not 

used when the difference algorithm was applied. To 
control the accuracy of numerical results, the problem 
was solved for the entire convection region. 

Figure 7 shows the variation in time of the 

maximum values of the stream function $ in the tri- 
angular enclosure at H = 0.5L and four Grashof num- 
bers : 104, 105, 106, and 10’. When Gr < 104, the stream 

function tends practically monotonously to its steady- 
state value. In the left half of the enclosure the fluid 
circulates in a clockwise sense. When Gr > 105, the 
function t,b,,x(t) ceases to be monotonous. At a certain 
instant the quantity $m.X attains a maximum and then, 
decreases to a steady-state value. It is characteristic of 
this type of boundary conditions (6) that the function 
timaX does not exhibit an oscillatory character. Thus, 
the triangular enclosure with isothermal surfaces pos- 
sesses increased damping properties. 

The influence of Grashof number on the position 
of stream lines and isotherms at H/L = 0.5 is pre- 
sented in Fig. 8. With the growth of Gr the centres of 
circulation zones shift to the comer points of the 
triangular base, the intensity of convection in the 
upper part of the enclosure decreases and the tem- 
perature distribution approaches the conditions of 
fluid stratification. 

The analysis of numerical results has shown that in 
the upper part of the enclosure the heat fluxes on the 
wall are small ; they decrease with an increase of the 
Grashof number and with the growth of the geo- 
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afff 
f 

FIG. 7. The dependence +mai(f) in a triangular enclosure with 
isothermal walls. 

A 8 

FIG. 8. Stream lines (left) and isotherms (right) in the steady- 
state convection regime. Dashed lines correspond to 

Gr = lo’, solid lines correspond to Gr = 10’. 

metrical parameter H/L. At high values of Gr and 
H/L the fluid temperature on the symmetry axis for 
y 2 O.SH/L is virtually equal to the temperature of 
the side walls, i.e. in the upper part of the enclosure 
the fluid has a homogeneous temperature. In this 
region the buoyancy forces are small, as well as heat 
fluxes through the inclined walls. 

As a result of the analysis of numerical data on the 
convection in a triangular enclosure with isothermal 
walls the formula is obtained which correlates the 
local Nusselt number on the surface of the heated wall 
AC with Gr, H/L and with the relative coordinate 1 
of a point on the wall 

GrO. 13 . l(-,f 
(22) 

where 

f = 1 _ 12.2~-,I”f/L’lWGr 

+(3.21-0.87J(H/L) 1ogGr)l. 

Equation (22) reveals an essential influence of H/L 

on the Nu distribution along the inclined surface. This 
formula approximates rather well the numerical data 
in the region of Grashof numbers lo3 < Gr < IO’ and 
geometric parameters 0.25 ,< H/L < 2 for I > 0.15. 

5. CONCLUSIONS 

(1) The finite-difference method is developed for 
solving the non-stationary Navier-Stokes and energy 
equations in the variables velocity-pressuretem- 
perature. Using this method the natural convection in 
a region bounded by an isosceles triangle is studied. 

(2) The regions of the values of the Grashof num- 
ber lo3 6 Gr < lo* and of the geometrical parameter 
0.25 < H/L < 2 are investigated. Two cases of ther- 
mal boundary conditions are examined : lateral heat- 
ing of the enclosure with an insulated base and heating 
from above. The results of calculations agree with the 
available experimental data. 

(3) At high values of Gr steady state is achieved 
non-monotonically. In some cases the maximum 
values of the stream function in an enclosure 
accomplish damping oscillations around their steady- 
state values. The heating of the enclosure from above 
exerts a higher damping influence on the process of 
convection development than in the case of lateral 
heating. 

(4) In the case of the lateral heating of an enclosure 
and high Gr, gradient regions, which resemble 
dynamic and thermal boundary layers, are formed on 
inclined walls. With the growth of Gr the isotherms 
in the central part of the enclosure take the horizontal 
position, which corresponds to the conditions of fluid 
stratification. 
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CONVECTION NATURELLE VARIABLE DANS DES ENCEINTES TRIANGULAIRES 

R&urn&On ttudie la convection naturelle laminaire dans une enceinte prismatique dont la section droite 
est un triangle isocele. On considtre deux cas de conditions aux limites: (a) la base horizontale est 
adiabatique, tandis que les parois inclinees sont isothermes (chaudes et froides) ; (b) toutes les surfaces 
sont isothermes (surfaces inch&es chaudes et base froide). La methode des differences finies utilisee pour 
resoudre les equations de Navier-Stokes et d’energie en regime variable utilise les variables physiques 
vitesse-pression-temperature. La solution numerique est donnte pour le nombre de Grashof lo3 < Gr < 10’ 
et le rapport hauteur sur base 0,25 < H/L < 2. On trouve que les valeurs maximales de la fonction de 
courant et du nombre de Nusselt peuvent subir des oscillations amorties autour des valeurs de regime 
permanent. Pour Gr tleve, des regions de gradient du type des couches limites dynamique et thermique se 
trouvent sur toutes les surfaces solides et la distribution de temperature dans la paroi centrale de l’enceinte 
s’approche des conditions de stratification du fluide. Les resultats sont en bon accord avec les donnees 

experimentales d’autres auteurs. 

TRANSIENTE NATURLICHE KONVEKTION IN HOHLRAUMEN VON DREIECKIGEM 
QUERSCHNITT 

Zusammenfassung-Die laminare nattirliche Konvektion in einem prismatischen Hohlraum von gleich- 
schenklig-dreieckigem Querschnitt wird analytisch untersucht. Zwei unterschiedliche Randbedingungen 
werden betrachtet : (a) die waagerechte Grundflache ist adiabat, wlhrend die beiden geneigten Wandfllchen 
isotherm (heil3 bzw. kah) sind: (b) samtliche Wandflichen sind isotherm (die geneigten heiI3 und die 
untenliegende kalt). Die nicht-stationaren Navier-Stokes- und Energiegleichungen werden unter Verwen- 
dung der physikalischen Variablen Geschwindigkeit-Druck-Temperatur mit Hilfe eines Finite-Differenzen- 
Verfahrens gel&t. Numerische Ergebnisse werden fiir Grashof-Zahlen lo2 < Gr < 10s und Hohe/Grund- 
kanten-Verhaltnisse 0,25 < H/L < 2 vorgestelh. Es zeigt sich. daR die Maximalwerte von Stromfunktion 
und Nusselt-Zahl gedlmpfte Schwingungen urn den jeweiligen stationaren Wert ausfiihren. Bei hoher 
Gr-Zahl bilden sich an allen festen Oberflachen Gradientengebiete vom Typ dynamischer und ther- 
mischer Grenzschichten aus. Die Temperaturverteilung im Kerngebiet des Hohlraumes nlhert sich 

einem geschichteten Zustand. 

HECTAI.&iOHAPHA2 ECTECTBEHHAX KOHBEKUHII B TPEYrOJIbHbIX EMKOCTflX 

AnlloT~BccJIenyeTccnnaMuHapHan eCTeCTBeHHan KOHBeKIUiIl BtIp)I3MaT&iSeCKOfieMKOCTH,IIone~+ 

"Oe~~e"~eKOTOpO~-paBHO6e~~HH~~T~yrOnbHaK.PaCCMaTpHBaK)TCR L,BaCJIy'IaK TeMnepaTypHbIX 

rpamwiblx ycnoeaii:(a) ropu30HTanbHoe ocHonaHHe TennoasomipoeaHo, HaKnomble creHKn H30Tep- 

hmqecKHe(xonomfan HropnSan);(n)nCeTn&pllble nonepxHocru a30TephwIecKHe(HawoHHue-ropnwe, 

~HOBaHneXOnOnH~).OnHCblBaeTCR KOHe'IHO-pa3HOCTHbIiieTOL,~IUeHHnH~Ta~~OHapHblX ypaBHe- 

HHii HaBbdTOKCa Ei 3HeprHN, WllOJIb3ylOLWiti &i3H’lWKBe tI~~MeliHL.Ie CKOpOCTb-LlaBJIeIiee- 

TehtnepaTypa. PemeHxe 3aqaw nonyseso B nHana3oHe wicen rpacroaa 10’ d Gr < IO” B oTHorUeH&iB 
BbIC0TL.l eMKOCTH K OCHOBBHHH) 0.25 d H/L < 2. YCTaHOBJteHO,YTO MaKCHMWIbH6le 3HaSeHHn @ytiKLWH 

TOKa A 3Ha9eHAn WicJIa HyCWIbTa MOryT COBepIIIaTb 3aTyxamuHe Kone6aHsn 86nu3ri HX CTaI&HOtiap- 

H~IX eenHwsH.~pa 6onbmrix 3HaSeHHRXwCJIa GrHaTBEpnbIx noBepxHocTnxo6pasytoTcnrpanHeIiTHbIe 

30IibI Tma nmaMmecKHx B TeMnepaTypHblx norpamwibIx cn&s, a pacnpenenemte TeMnepaTypbl B 
uewpanbiiofi -iamn ehwocra npe6nwxaercr K ycnowim cTpaTe&iKawiH nmmowii. Rony~eamde 

~3ynbTaTblCOrnaCyloTCnC3KCnePHMeHT~bHbIMHnaHH~MHLIpyrHXaBTOpOB. 


